Unsupervised Pre-training With Seq2Seq Reconstruction Loss for Deep Relation Extraction Models

نویسندگان

  • Zhuang Li
  • Lizhen Qu
  • Qiongkai Xu
  • Mark Johnson
چکیده

Relation extraction models based on deep learning have been attracting a lot of attention recently. Little research is carried out to reduce their need of labeled training data. In this work, we propose an unsupervised pre-training method based on the sequence-to-sequence model for deep relation extraction models. The pre-trained models need only half or even less training data to achieve equivalent performance as the same models without pre-training.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost-Aware Pre-Training for Multiclass Cost-Sensitive Deep Learning

Deep learning has been one of the most prominent machine learning techniques nowadays, being the state-of-the-art on a broad range of applications where automatic feature extraction is needed. Many such applications also demand varying costs for different types of mis-classification errors, but it is not clear whether or how such cost information can be incorporated into deep learning to improv...

متن کامل

Neural Photometric Stereo Reconstruction for General Reflectance Surfaces

We present a novel convolutional neural network architecture for photometric stereo (Woodham, 1980), a problem of recovering 3D object surface normals from multiple images observed under varying illuminations. Despite its long history in computer vision, the problem still shows fundamental challenges for surfaces with unknown general reflectance properties (BRDFs). Leveraging deep neural networ...

متن کامل

Why Does Unsupervised Pre-training Help Deep Learning?

Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language data sets. The best results obtained on supervised learning tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase. Even thou...

متن کامل

Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), se...

متن کامل

Unsupervised Feature Learning With Symmetrically Connected Convolutional Denoising Auto-encoders

Unsupervised pre-training was a critical technique for training deep neural networks years ago. With sufficient labeled data and modern training techniques, it is possible to train very deep neural networks from scratch in a purely supervised manner nowadays. However, unlabeled data is easier to obtain and usually of very large scale. How to make use of them better to help supervised learning i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016